本文作者:admin

人工智能是什么意思?

促天科技 2025-04-26 10:48 0 0条评论

一、人工智能是什么意思?

1. 人工智能(Artificial Intelligence, AI)指的是机器模仿人类智能的能力,通过算法和模型来实现对知识的运用,以完成各种复杂的任务。

2. 人工智能可以分为两类:弱人工智能(Narrow AI)和强人工智能(General AI)。弱人工智能专注于特定任务,而强人工智能则具备类似人类的全面认知能力,包括推理、自我意识和情感思考等。

3. 人工智能的发展程度可以通过不同的技术层面来分类,包括人工智能、机器学习(Machine Learning, ML)和深度学习(Deep Learning, DL)。机器学习是人工智能的一个子集,它通过分析现有数据集来建立模型,进而预测未知数据的结果。

4. 深度学习是机器学习的一个分支,它通过大量数据训练神经网络,使机器能够识别和处理复杂的模式,如文字、图像和声音,从而实现对现实世界事物的理解和认知。

希望以上说明能够帮助你更好地理解人工智能的概念,并欢迎采纳这些信息。

二、以“我眼中的人工智能”为题,写一篇小论文。 (什么是人工智能、人工智能与人类的关系、人工智能对人类生

首先明确下这个人工智能的定义,我眼中的人工智能是可以和人一样,有着七情六欲的家伙。比如机器猫、光晕里的那个八婆。现在已经有部分人工智能让我们惊讶了,今天刚刚被一个叫爱丽丝的机器人恐吓了一下,我说它仅仅是个机器人,它说等机器人控制这个世界的时候希望我还记得我说过的仅仅二字。lol

回到正题,现在的AI都是一段段程序,事先预设了各种可能,跟人脑还没得比,但是这并不代表着处理器就落后于人脑。预设各种可能情况从而判断该如何回答提问者,这是现阶段唯一能做的,但是未来不是。看看百度百科吧,你会发现人脑是由140亿个神经元构成的,每个神经元会有5万个左右的突触,用于和其他的神经元联络,从而实现大脑的计算。不过对于大脑的奥秘我们知之甚少,计算到底是在细胞层面还是在原子层面上?不知道,如果记忆是化学物质的话那就是后者,更有人认为人脑功能的实现是基于量子层面甚至和暗物质有关,希望不是,否则我们实现人工智能的难度就大了点。

好吧我们就先假设人脑的工作是基于细胞层面上的,那么就是说最小的功能单位就是细胞,那么我们可以写个程序,将细胞作为一个基点,每个基点与另外140亿基点中的五万个有联系,恩,人工智能可以不需要生命维持等,小脑和脑干部分的神经元我们可以忽略掉,节省下一部分计算空间。当然这一切的前提是——获得大脑详细模型!要分子级别的,因为突触很小,这个工作量和难度,等个几十年吧,还有运算这个程序的电脑也是。

三、信息技术的人工智能

人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。

在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们所采用的思想方法有许多还是来自于这个50年代的程序。

1956年,作为人工智能领域另一位著名科学家的麦卡希召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,人工智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。

在1963年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了SHRDLU。在这个大发展的60年代,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,它作为生活的重要方面开始改变人类生活了。在理论方面,70年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在70年代,另一个人工智能语言Prolog语言诞生了,它和LISP一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的。 问题求解。

人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。 逻辑推理与定理证明。

逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。 自然语言处理。

自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。 智能信息检索技术。

受()*+ (*) 技术迅猛发展的影响,信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。 专家系统。

专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。成功的例子如:PROSPECTOR系统发现了一个钼矿沉积,价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果,对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。 机器翻译

机器翻译也是目前人工智能中最活跃的一个研究领域,它是建立在语言学、数学和计算机科学这三门学科的基础之上的。语言学家提供适合于计算机进行加工的词典和语法规则,数学家把语言学家提供的材料形式化和代码化,计算机科学家给机器翻译提供软件手段和硬件设备,并进行程序设计。缺少上述任何一方面,机器翻译就不能实现,机器翻译效果的好坏,也完全取决于这三个方面的共同努力。就已有的成就来看,机译的质量离终极目标仍相差甚远。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的。同时,他还指出:在人类尚未明了人脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。