本文作者:admin

什么抑制原核生物RNA聚合酶?

促天科技 2025-02-28 04:41 0 0条评论

一、什么抑制原核生物RNA聚合酶?

一些抗生素,如利链菌素,可以抑制原核生物的RNA聚合酶,使得原核生物的基因无法转录成mRNA,从而达到杀死细菌等原核生物的效果。

二、原核生物rna聚合酶的结构特点?

RNA聚合酶全酶形式为α2ββ’δ,共5个亚基。 α亚基与RNA聚合酶的四聚体核心(α2ββ’)的形成有关; β亚基含有核苷三磷酸的结合位点; β’亚基含有与DNA模板的结合位点; δ因子只与RNA转录的起始有关,与链的延伸没有关系,一旦转录开始,δ因子就被释放,而链的延伸则由四聚体核心酶(core enzyme)催化。所以,δ因子的作用就是识别转录的起始位置,并使RNA聚合酶结合在启动子部位。

三、真核生物rna聚合酶是否能识别原核生物的启动子?

不能,原核生物也有自己的RNA聚合酶,识别自己的启动子。真核生物RNA聚合酶识别真核生物的启动子。

四、原核生物rna特征?

蛋白质合成往往在mRNA刚开始转录时就被引发了。2>许多以多顺反子的形式存在。原核细胞的mRNA(包括病毒)有时可以同时编码几个多肽。3>原核生物mRNA的5’端无帽子结构,3’端没有或只有较短的多聚A结构,原核生物起始密码子AUG上游有一被称为Ribosome Binding Site (RBS)或SD序列

(Shine –Dalgarno sequence)的保守区,因为该序列与16S-rRNA 3’端反向互补,所以被认为在核糖体-mRNA的结合过程中起作用4>原核生物常以AUG(有时GUG,甚至UUG)作为起始密码子;

真核生物mRNA的特点为:1>真核细胞mRNA的合成和功能表达发生在不同的空间和时间范畴内。mRNA以较大分子量的前体RNA出现在核内,只有成熟的、相对分子质量明显变小并经化学修饰的mRNA才能进入细胞质,

参与蛋白质的合成。2>以单顺反子形式存在 。3>真核生物mRNA的5’端存在帽子结构,除组蛋白基因外,真核生物mRNA的3’端具有多聚A结构,真核生物的mRNA中,由DNA转录生成的原始转录产物-----前体mRNA,要经过5’加“帽”和3’酶切加多聚腺苷酸,再经过RNA的剪接,编码蛋白质的外显子部分就连接成为一个连续的可译框,通过核孔进入细胞质,作为蛋白质合成的模板。真核生物的mRNA还可以通过RNA编辑在初级转录物上增加、删除或取代某些核苷酸而改变遗传信。4>真核生物几乎永远以AUG作为起始密码子

原核生物和真核生物mRNA有不同的特点:

原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。

原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。

原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中的RNA除外)。真核生物mRNA的半寿期较长, 如胚胎中的mRNA可达数日。

五、原核生物中rna聚合酶识别转录起始点的亚基是?

原核生物中,RNA聚合酶识别转录起始点的亚基是σ亚基。

催化原核生物转录的酶是RNA聚合酶,它是由4种亚基(α2ββ"σ)组成,其中σ亚基辨认转录起始点。

六、原核生物RNA聚合酶全酶的构成即各成分功能?

原核生物RNA聚合酶由五种亚基组成的六聚体(α2ββ'ωσ)分子量约500 000。其中α2ββ'ω称为核心酶(coreenzyme),σ因子与核心酶结合后称为全酶(holoenzyme)。

1. α亚基

α亚基由αCTD和αNTD两部分组成,两个部分之间是由柔性组件进行连接的,其中αNTD与RNAP的其余部分进行连接,αCTD与启动子上游元件进行连接,而由于α亚基两部分之间是柔性连接的,所以αCTD 可以占据启动子上游的不同位置。

2. β亚基和β'亚基

β亚基和β'亚基分别由rpoB和rpoC编码得到,在MG1655菌株基因组中,ropB基因和ropC 基因是相邻的。β-亚基和β′-亚基通过与α-亚基的N端结构结合而组装,组装形成一个裂缝,在其中是RNA聚合酶的活性位点。

3. ω亚基

ω亚基由rpoZ基因编码,ω亚基具有保护β′亚 基、帮 助β′亚 基 折 叠 和 协 助RNA聚 合 酶组装等功能。研究发现,大肠杆菌的rpoZ基因缺失突变体在常规培养基中的生长比野生型菌株显著减慢,说明ω亚基在大肠杆菌细胞生长繁殖过程中起重要作用。

4. σ亚基

σ70亚基由rpoD基因编码,是由四个结构域组成的,这四个结构域分别能够跟启动子上的不同元件进行连接。σ因子的作用是引导RNA聚合酶在启动子处的定位,然后协调开放复合物的形成。因此,RNA聚合酶和启动子特异性取决于其σ因子。

七、27.原核生物RNA聚合酶的核心酶由组成?

α 2 ββ′ 原核生物RNA聚合酶的核心酶由----α 2 ββ′---- 组成

八、原核生物和真核生物都有RNA吗?

当然

当然了。 无论是真核生物还是原核生物,其遗传物质都是DNA,也就是说细胞中都有DNA存在,同时,细胞转录还会形成RNA。 所以真核生物和原核生物都有DNA和RNA。

原核生物基因分为编码区与非编码区。所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,也就是说能够编码蛋白质。非编码区则相反,但是非编码区对遗传信息的表达是必不可少的,因为在非编码区上有调控遗传信息表达的核苷酸序列。非编码区位于编码区的上游及下游。在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。RNA聚合酶是催化DNA转录为RNA,能识别调控序列中的结合位点,并与其结合。

九、原核生物dna聚合酶组成?

DNA聚合酶I的二级结构以螺旋为主,可划分为A至R共18个螺旋肽段。螺旋肽段之间由非螺旋结构连接。其中H区与I区之间的无规则结构较长,有50个氨基酸残基,I螺旋与O螺旋之间由较大的空隙,可以容纳DNA链,而50个氨基酸的无规结构,就像一个盖子那样与I、O螺旋区共同把DNA链包围起来,使其向一个方向滑动。

DNA聚合酶I只能催化延长约20个核苷酸左右,说明它不是复制延长过程中起作用的酶。DNA聚合酶I在活细胞内的功能,主要是对复制中的错误进行校读,对复制和修复中出现的空隙进行填补。

十、原核生物的基因识别

原核生物的基因识别是遗传学领域一项重要的研究课题。基因识别(gene recognition)指的是在基因组中确定基因的位置和边界的过程。对于原核生物,尤其是细菌,基因识别意味着在DNA序列中准确地确定开放阅读框(open reading frame, ORF)的位置,从而找到编码蛋白质的基因。

在原核生物的基因组中,基因和非编码区域的界限并不明显,区分真正的基因序列和假基因或噪音序列是一项具有挑战性的任务。然而,通过结合生物信息学方法和实验验证,研究人员取得了广泛的进展,为原核生物的基因识别提供了有效的工具和方法。

基因组注释的重要性

对于研究原核生物基因的功能、表达和调控机制来说,准确地识别基因的位置至关重要。基因组注释(genome annotation)是基因识别的过程,它不仅包括基因的定位和边界,还涉及功能预测、外显子、内含子和启动子等结构元件的注释。

基因组注释的准确性对于理解基因的功能和参与的生命过程至关重要。通过基因组注释,研究人员可以进一步预测基因的蛋白质编码能力、保守性、代谢路径等信息,为基因功能研究提供重要线索。此外,基因组注释还为研究人员提供了分析基因组结构、基因组演化和物种间差异的基础。

原核生物基因识别的方法

随着技术的不断进步,原核生物基因识别的方法也在不断发展。下面将介绍一些常用的原核生物基因识别方法:

  • 相似性比对法(Homology-based method):该方法通过比对已知编码蛋白质序列和待识别基因组序列之间的相似性,以预测基因的位置和结构。常用的相似性搜索工具包括BLAST、HMMER等。
  • 统计学方法(Statistical methods):该方法利用统计学模型来预测基因的位置和边界。例如,基于隐马尔可夫模型(Hidden Markov Model, HMM)的GeneMark、基于贝叶斯网络的Prodigal等。
  • 组学方法(Genomic approaches):该方法结合大规模基因组学数据进行基因识别。例如,利用转录组、蛋白质组等数据来验证预测的基因位置和边界。

基因识别的生物信息学工具

在原核生物基因识别中,生物信息学工具发挥着重要的作用。下面介绍一些常用的基因识别工具:

  • Barrnap:一款用于识别原核生物rRNA基因的工具。通过比对已知rRNA基因序列,Barrnap能够准确地识别出基因组中的rRNA基因。
  • GeneMark:基于统计模型和信息论的GeneMark能够准确地识别原核生物的编码基因。该工具已经广泛用于多个细菌物种的基因组注释。
  • Glimmer:Glimmer是一款广泛应用的原核生物基因识别工具,通过统计学方法和开放阅读框模型来预测基因的位置和结构。

基因识别的挑战与展望

尽管原核生物基因识别的方法和工具已经取得了显著的进展,但仍然面临一些挑战。首先,细菌的基因组中存在大量的非编码序列和假基因,这增加了基因识别的复杂性。其次,一些原核生物可能存在多个细胞器和线粒体,这些细胞器的基因识别更加困难。

随着技术的不断进步和生物信息学的发展,我们有理由相信原核生物基因识别将迎来更好的解决方案。新的算法和工具的开发将提高基因识别的准确性和效率。此外,利用大规模生物数据的整合和分析也将为基因识别提供更多信息。

总之,原核生物基因识别是一项重要而具有挑战性的任务。通过生物信息学方法的不断发展和创新,我们将能够更准确地识别原核生物基因的位置和边界,为后续基因功能研究和生命科学的发展提供有力支持。