本文作者:admin

纳米药物就业前景?

admin 2024-05-12 0 0条评论

一、纳米药物就业前景?

就业前景不错,纳米药物的境遇可说是“一朝被人识,独秀占枝头”。起步于2000年左右的纳米医药由于在肿瘤、心血管病、传染病等重大疾病的诊治方面所显示出来的广阔的应用前景,在短短几年就成为各国政府的“宠儿”。21世纪以来,各国政府相继加大了对纳米药物研究的资助力度,美国、德国、瑞士、日本等发达国家都已将纳米生物技术和纳米药物作为本国国家纳米发展战略的主要内容之一。 所以纳米药物就业前景不错。  

二、药物分析技术研究方向是什么?

目前来看,药学分析专业的就业形势以及前景都还不错,因为现今的制药企业多得数不胜数,药物生产到流入市场之间必然必要药学分析人员对药品的质量进行把关。当然话说回来,现在做制药这一行的,从挣钱的目的来看的话,做销售无疑是来钱最快的,无论是做药学分析还是其他技术类工作都要有耐心慢慢学习慢慢积累,终有一天会做出一番好的景象,这些是我一个药学分析人的一些看法,希望可以帮到你~

三、纳米高分子药物载体有哪些作用?

  

1)纳米药物载体可经过血液循环进入毛细血管,还可透过内皮细胞间隙,进入病灶,被细胞以胞饮的方式吸收,实现靶向用药,提高了药物的生物利用率。  

2)纳米载体粒径较小,拥有较高的比表面,可以包埋疏水性药物,提高其溶解性,减少常规用药中助溶剂的副作用。  

3)纳米药物载体经靶向基团修饰后可实现靶向药物给药,可减少用药剂量,降低其副作用,如叶酸修饰载药纳米粒、磁性载药纳米粒等。  

4)纳米载体可延长药物的消除半衰期(t1/2β),提高有效血药浓度时间,提高药效,降低用药频率,减少其毒副作用。  

5)纳米载体可透过机体屏障对药物作用的限制,如血脑屏障、血眼屏障及细胞生物膜屏障等,使药物到达病灶,提高药效。

四、用作药物载体的纳米粒有哪些优点?

  

1)纳米药物载体可经过血液循环进入毛细血管,还可透过内皮细胞间隙,进入病灶,被细胞以胞饮的方式吸收,实现靶向用药,提高了药物的生物利用率。  

2)纳米载体粒径较小,拥有较高的比表面,可以包埋疏水性药物,提高其溶解性,减少常规用药中助溶剂的副作用。  

3)纳米药物载体经靶向基团修饰后可实现靶向药物给药,可减少用药剂量,降低其副作用,如叶酸修饰载药纳米粒、磁性载药纳米粒等。  

4)纳米载体可延长药物的消除半衰期(t1/2β),提高有效血药浓度时间,提高药效,降低用药频率,减少其毒副作用。  

5)纳米载体可透过机体屏障对药物作用的限制,如血脑屏障、血眼屏障及细胞生物膜屏障等,使药物到达病灶,提高药效。

五、纳米技术研究有哪些

纳米技术研究有哪些

纳米技术是当前科技领域中备受瞩目的研究方向之一,它的应用涵盖了诸多领域,如材料科学、生物医学、电子学等。纳米技术的发展不仅推动了科技创新,也为人类社会带来了诸多变革。那么纳米技术究竟涉及哪些研究方向呢?以下将详细介绍一些现阶段纳米技术研究的主要领域。

1. 纳米材料研究

纳米材料是纳米技术应用中的重要组成部分,其特殊的物理化学性质使其在材料科学领域具有广泛的应用前景。纳米材料研究主要包括纳米颗粒、纳米结构材料、纳米复合材料等方面。科研人员通过调控纳米材料的结构和性质,实现材料的功能化设计,广泛应用于材料改性、能源储存、传感器制备等领域。

2. 纳米生物学研究

纳米技术在生物医学领域的应用日益突出,纳米生物学研究成为了备受关注的领域之一。通过纳米技术,科研人员可以研究生物体内微观层面的结构与功能,开展药物递送、基因治疗、生物成像等方面的研究。纳米生物学的发展为生物医药领域的创新提供了新的思路和技术手段。

3. 纳米电子学研究

纳米技术对电子学领域的影响也日益显现,纳米电子学研究成为了当前研究的热点之一。纳米电子学主要涉及纳米电子器件、纳米电路、量子效应等方面的研究。通过纳米技术,科研人员可以制备尺寸微小、性能优越的电子器件,推动电子学领域的发展与创新。

4. 纳米环境科学研究

纳米技术在环境领域的应用也备受关注,纳米环境科学研究逐渐兴起。通过纳米技术手段,科研人员可以研究环境中微观污染物的迁移转化规律,开发纳米材料用于环境治理与修复,推动环境可持续发展。纳米环境科学的发展为解决环境问题提供了新的思路与方法。

5. 纳米医学研究

纳米技术在医学领域的应用前景广阔,纳米医学研究吸引了众多科研人员的关注。通过纳米技术,科研人员可以实现精准诊疗、靶向治疗等多种医学应用。纳米医学的发展为医学诊疗技术带来了革命性的变革,为医疗健康领域注入了新的活力与希望。

6. 纳米能源研究

能源问题是全球面临的重要挑战之一,纳米技术为能源领域的发展提供了新的解决途径。纳米能源研究主要涉及纳米材料在能源转换、能源存储、能源利用等方面的应用。通过纳米技术手段,科研人员可以提高能源转换效率、延长能源存储寿命,推动可再生能源技术的发展与应用。

综上所述,纳米技术的研究方向之多样性与广泛性为我们带来了无限的想象空间,纳米技术的不断创新与突破将助力于推动科技进步与社会发展。相信随着纳米技术的不断深入研究,将有更多的领域受益于纳米技术的应用,为人类社会的未来发展开辟出更加美好的前景。

六、我国对纳米技术研究的成果主要有哪些?

1、我国在纳米技术研究方面取得了显著成就。2、原因是我国政府高度重视纳米技术研究,大力支持相关科研项目的发展,同时还吸引了很多优秀的科研人才加入该领域的研究。3、在纳米技术研究方面,我国已经取得了多方面的成果,如纳米材料、纳米电子、纳米医学等多个领域都有重要突破。其中,纳米医学领域的研究更是成果丰硕,如纳米药物、纳米影像等技术已经被广泛应用于临床。此外,我国还在推进纳米技术与工业的深度融合,在新材料、新能源、智能制造等领域取得了重要进展,极大地推动了我国科技与经济的发展。

七、纳米药物算药剂学吗?

纳米药物是传统药剂学、药理学、药学等学科与现代纳米技术相结合的产物,属于高端药物制剂,是药物与相关载体材料制成的粒径在10~1000nm范围内的纳米药物晶体或纳米载药微粒的统称。

八、纳米药物历史现状及前景?

纳米药物制剂的现状与未来

在药剂学中纳米粒的尺寸界定在1~1000纳米之间。药剂学中的纳米粒可以分成两类:纳米载体和纳米药物。纳米载体系指溶解或分散有药物的各种纳米粒,如纳米脂质体、聚合物纳米囊、纳米球、聚合物胶束等。纳米药物则是指直接将原料药物加工成的纳米粒。

纳米粒制备技术

纳米粒制备的关键是控制粒子的大小和获得较窄且均匀的粒度分布,减少或消除粒子团聚现象,保证用药有效、安全和稳定。毫无疑问,生产条件、成本、产量等也是综合考虑的因素。目前发展的纳米粒制备技术可分为3类,即机械粉碎法、物理分散法和化学合成法。除传统的一些机械粉碎设备的改进,如振动磨、气流粉碎机、超声喷雾器等外,也开发了一些新的机械粉碎技术,如超临界流体技术、超临界流体-液膜超声技术、高压均质法-气穴爆破技术等先进技术及相关设备。

不同的制备技术和工艺适合于不同种类纳米粒的制备。例如,熔融分散法主要用于固体脂质纳米粒(sln)的制备;溶剂蒸发法、乳化/溶剂扩散法等物理方法可用于纳米混悬液或假胶乳的制备;而利用聚乳酸(pla)、聚丙交酯-乙交酯、聚氨基酸、壳聚糖等作为疏水链段,利用聚乙二醇(peg)、聚氧乙烯(peo)-聚氧丙烯等作为亲水链段,合成具有表面活性的嵌段共聚物或接枝共聚物,在水中溶解并形成纳米胶束;将含有壳聚糖-peg嵌段共聚物的水溶液与聚阴离子化合物-三聚磷酸钠的水溶液混合,由于相反电荷的结合而凝聚成纳米粒等。

纳米粒的应用

1.改善难溶性药物的口服吸收 在表面活性剂和水等存在下直接将药物粉碎成纳米混悬剂,适合于包括口服、注射等途径给药,以提高吸收或靶向性。通过对附加剂的选择可以得到表面性质不同的微粒,特别适合于大剂量的难溶性药物的口服吸收和注射给药。纳米粒可以提高药物溶出度,也可以提高溶解度,还可以增加粘附性,形成亚稳晶型或无定形以及消除粒子大小差异产生的过饱和现象等。

2.靶向和定位释药 纳米粒在体内有长循环、隐形和立体稳定等特点,这些特点均有利于增加药物的靶向性,是抗肿瘤药物、抗寄生虫药物的良好载体。用聚山梨酯80对纳米粒进行表面修饰,显著提高了药物的脑内浓度,改善了脑内实质性组织疾病和脑神经系统疾病的治疗有效性。口服给予纳米脂质体、聚合物纳米粒,能增加其在肠道上皮细胞的吸附,延长吸收时间,增加药物通过淋巴系统的转运和通过肠道payer’s区m细胞吞噬进入体内循环等。

3.生物大分子的特殊载体 研究纳米载体携带大分子药物增进其吸收、稳定和靶向有良好的发展前景。作为生物大分子的载体,纳米粒可以用于口服、注射、肺吸入等多种途径,适合多肽与蛋白质、dna、齐聚寡核苷酸、基因治疗等各类治疗药物。对于口服或肺吸入的多肽药物而言,改善纳米粒的黏膜粘附性质有助于改进有效性和延长作用时间。对于基因治疗,纳米粒还有其他优点。纳米粒不仅包含稳定的基因片段,防止基因的不稳定性,还能够同时包合某些导靶片断及其他辅助成分,提高靶向性,提高基因进入细胞内的穿透性或者提高由于刺激受体产生的细胞内吞作用等。

纳米粒的类型

1.纳米脂质体 粒径控制在100纳米左右、并用亲水性材料如聚乙二醇进行表面修饰的纳米脂质体在静脉注射后,兼具长循环和隐形或立体稳定的特点。对减少肝脏巨噬细胞对药物的吞噬、提高药物靶向性、阻碍血液蛋白质成分与磷脂等的结合、延长体内循环时间等具有重要作用。纳米脂质体也可作为改善生物大分子药物的口服吸收以及其他给药途径吸收的载体,如透皮纳米柔性脂质体和胰岛素纳米脂质体等。

2.固体脂质纳米粒 与以磷脂为主要成分的脂质体双分子层结构不同,固体脂质纳米粒(sln)是由多种类脂材料如脂肪酸、脂肪醇及磷脂等形成的固体颗粒。sln性质稳定,制备较简便,具有一定的缓释作用,主要适合于难溶性药物的包裹,用作静脉注射或局部给药。它可以作为靶向定位和控释作用的载体。

3.纳米囊和纳米球 主要由聚乳酸、聚丙交酯-乙交酯、壳聚糖、明胶等高分子材料制备而成。可用于包裹亲水性药物,也可包裹疏水性药物。根据材料的性能,适合于不同给药途径如静脉注射的靶向作用、肌肉或皮下注射的缓控释作用。口服给药的纳米囊和纳米球也可用非降解性材料制备,如乙基纤维素、丙烯酸树脂等。

4.聚合物胶束 这是近几年正在发展的一类新型的纳米载体。有目标地合成水溶性嵌段共聚物或接枝共聚物,使之同时具有亲水性基因和疏水性基因,在水中溶解后自发形成高分子胶束,从而完成对药物的增溶和包裹。因为其具有亲水性外壳及疏水性内核,适合于携带不同性质的药物,亲水性的外壳还具备“隐形”的特点。目前研究较多的是聚乳酸与聚乙二醇的嵌段共聚物,而壳聚糖及其衍生物因其优良的生物降解特性正在受到密切关注。

5.纳米药物 在表面活性和水等附加剂存在下,直接将药物粉碎加工成纳米混悬剂,通常适合于包括口服、注射等途径给药,以提高吸收或靶向性。通过对附加剂的选择,可以得到表面性质不同的微粒。特别适合于大剂量的难溶性药物的口服吸收和注射给药。

将来的纳米药物制剂

1.智能化的纳米药物传输系统 如超小型的血糖检测系统,通过植入皮下监测血糖水平,可适时准确地释放出胰岛素。一种称之为“微型药房”的微型芯片,具有上千个小药库,每一个小药库里容纳25纳升的任何药物,装有“智能化”的传感器,可以适时和适量地释放药物。一种仅有20纳米左右的“智能炸弹”,可以识别出癌细胞的化学特征,进入并摧毁单个的癌细胞。

2.人工红细胞 设计一种装备纳米泵的人工红细胞,携氧量是天然红细胞的200倍以上。当因心脏发生意外,突然停跳时,可将其注入人体,提供生命赖以生存的氧。这种“细胞”是个约1微米大小的金刚石的氧气筒,内部有1000个大气压,泵动力来自血清葡萄糖。它输送氧的能力是同等体积天然红细胞的236倍,并维持生物活性。

3.纳米生物药物输运 利用纳米技术把新型基因材料输送到已经存在的dna里,而不会引起任何免疫反应。树形聚合物是提供此类输送的良好候选材料。因为它是非生物材料,不会诱发病人的免疫反应,没有形成排异反应的危险,所以作为药物的纳米载体,携带药物分子进入人体的血液循环,可使药物在无免疫排斥反应的条件下,发挥治病的效果。

4.捕获病毒的纳米陷阱 树形聚合物还可用于制备能够捕获病毒的纳米陷阱。纳米陷阱的原理是装载有与病毒结合的超小分子,使病毒丧失致病能力。例如,人体细胞表面含有硅铝酸受体结合位点,而病毒则可能具有硅铝酸受体。把能够与病毒结合的硅铝酸位点覆盖在陷阱细胞表面,当病毒结合到陷阱细胞表面时,就无法再感染人体细胞。这样,在病毒感染细胞之前就可将其捕获。陷阱细胞能够繁殖,由外壳、内腔和核三部分组成。可以将它的内腔充填药物分子,它能够被直接送到肿瘤内。研究者希望发展针对各种致病病毒的特殊陷阱细胞和用于医疗的陷阱细胞库。

5.分子马达 分子马达是由生物大分子构成,利用化学能进行机械做功的纳米系统。驱动蛋白、rna聚合酶、肌球蛋白等都是天然的分子马达,参与胞质运输、dna复制、细胞分裂、肌肉收缩等一系列重要生命活动。分子马达包括线性和旋转式两大类。其中线性分子马达是将化学能转化为机械能,并沿着一条线性轨道运动的生物分子,主要包括肌球蛋白、驱动蛋白、dna解旋酶和rna聚合酶等。典型的旋转式分子马达是f1-atp酶。f1-atp酶与纳米机电系统的组合已成为新型纳米机械装置,可完成在血管内定向输送药物、清除血栓、进行心脏手术等复杂工作。《中国医药报》2002.9.3

九、药监局要销毁药物需要哪些手续?

药品不是其他商品,无法证实合法渠道的药品即使检验合格也无法保证安全性,不能进行通常的拍卖等处理。 没收后90日后即可销毁。

十、新西兰哪些药物需要申报

新西兰哪些药物需要申报

对于前往新西兰的旅客来说,了解新西兰的海关法规是非常重要的。其中一个常见的问题是关于哪些药物需要申报的问题。根据新西兰海关的规定,携带部分药物需要进行申报,以确保所有药物的合法性和安全性。

为什么需要申报药物

新西兰对药物的管控非常严格,这是为了保护公众的健康和安全。一些药物可能含有管制的成分,或者需要医生的处方才能合法使用。因此,海关需要了解旅客携带的药物情况,以便核实其合法性。

哪些药物需要申报

一般来说,以下几类药物需要申报:

  • 含有管制成分的药物:包括一些处方药和非处方药,如镇痛药、催眠药等。
  • 注射剂:包括胰岛素等需要注射的药物。
  • 个人药物:即使是一些常见的非处方药,也需要申报。

如果您不确定自己携带的药物是否需要申报,建议提前向新西兰海关进行咨询。

如何申报药物

在抵达新西兰海关时,您需要如实告知海关您携带的所有药物情况。您可以填写入境卡上的药物申报栏,并如实填写药物名称、数量以及用途。如果有需要,海关可能会要求出示药物的处方。

后续处理

海关在核实您携带的药物后,会根据情况做出相应的处理。如果您携带的药物合法并且符合规定,通常不会有问题。但如果发现有违规携带药物,可能会面临罚款或其他处罚。

注意事项

在前往新西兰之前,一定要对您携带的药物进行充分了解。查看药物成分、使用方法以及是否需要处方。如有任何疑问,建议咨询医生或药剂师。

总的来说,准备前往新西兰的旅客在携带药物时一定要谨慎对待,确保所有药物的合法性,并如实申报,以免造成不必要的麻烦和后续处理。