一、GPS定位所需的技术?
GPS定位技术可为用户提供随时随地的准确位置信息服务。它的基本原理是将GPS接收机接收到的信号经过误差处理后解算得到位置信息,再将位置信息传给所连接的设备,连接设备对该信息进行一定的计算和变换(如地图投影变换、坐标系统的变换等)后传递给移动终端。
GPS全球卫星定位导航系统,开始时只用于军事目的,后转为民用被广泛应用于商业和科学研究上。GPS空间部分使用了二十四颗卫星组成的星座,卫星高度约20200公里,分布在六条升交点互隔60度的轨道面上,每条轨道上均匀分布四颗卫星,相邻两轨道上的卫星相隔40度,使得地球任何地方至少同时可看到四颗卫星。传统的GPS定位技术在户外运转良好,但在室内或卫星信号无法覆盖的地方效果较差,而且如果所在位置上空没有3颗以上的卫星,那么系统就无法从冷启动状态实现定位。
二、人工智能发展所需的技术及其应用
人工智能发展的技术需求
随着科技的不断进步,人工智能已经逐渐走进我们的生活,它需要一系列的技术来支撑其发展。其中包括:大数据技术、机器学习、自然语言处理、计算机视觉和深度学习。
大数据技术
大数据技术是人工智能的重要基础,它通过收集、存储和分析大规模数据,为人工智能系统提供必要的信息和支持。借助大数据技术,人工智能可以更好地理解和预测人类行为,从而为我们的生活和工作带来便利。
机器学习
机器学习是人工智能的核心技术之一,它使得计算机系统可以从数据中学习并不断改进自身的性能。通过机器学习,人工智能系统可以自动分析数据、识别模式,并做出有效决策,如智能推荐系统、智能语音助手等。
自然语言处理
自然语言处理技术使得计算机能够理解、分析和生成人类语言。它为人工智能赋予了与人类交流的能力,包括语音识别、机器翻译、智能客服等应用。
计算机视觉
计算机视觉技术使得计算机可以“看懂”图像和视频,识别其中的对象、场景和动作。这项技术为人工智能赋予了“观察、理解和交互”的能力,应用包括人脸识别、智能监控、无人驾驶等。
深度学习
深度学习是机器学习的一个分支,通过人工神经网络模拟人脑的工作方式,实现复杂模式识别和抽象推理。在语音识别、图像识别、自然语言处理等领域,深度学习技术都取得了显著的进展。
综上所述,大数据技术、机器学习、自然语言处理、计算机视觉和深度学习是人工智能发展所必不可少的关键技术。它们共同构成了人工智能的技术支柱,并在各个领域展现出巨大的应用潜力。
感谢您阅读本文,希望通过本文对人工智能技术需求有了更清晰的认识,这些技术的发展将为我们的生活和工作带来越来越多的便利和创新。
三、人工智能的主要技术?
人工智能可分为六个技术方向:
1、机器视觉,包括3D重建,模式识别,图像理解等。
2、语言理解和沟通,包括语音识别,综合,人机对话,机器翻译等;
3、机器人技术,包括力学,控制,设计,运动规划,任务规划等;
4、认知和推理,包括各种身体和社会常识的认知和推理;
5、游戏和道德,包括多智能体,机器人和社会整合的互动,对抗和合作;
6、机器学习,包括各种统计建模,分析工具和计算方法。
四、人工智能的基本技术?
人工智能技术基础技术就如同,盖楼所需要的地基有了地基才能一层一层的往上盖,人工智能基础技术其中包括材料,软件这两大类,材料制约齐发展的是电机技术它的动能跟人类动物的肌肉相比非常低效,在同等体力能耗当面,未来必须研发一款放生肌肉来代替电机驱动!
软件是人工智能的思维方式,虽然各大公司推出了神经芯片但进展并不大,与人体大脑差距太远,那一天科技公司开始公布芯片的跟大脑的像似度指数的时候才是真正进入人工智能时代,现在所有人工智能只是 自动化。
五、人工智能技术的技术指标?
1.准确率(Accuracy)
所有被预测正确的样本(包括正、负)占所有样本的比例
2.精确率(Precision)
又叫查准率,正确预测为正的占所有预测为正的比例
3.召回率(recall)
又叫查全率,正确预测正样本占标注为正的比例
4.真正类率(True Postive Rate)
代表分类器预测的正类中实际正实例占所有正实例的比例。TPR=Recall。
5.负正类率(False Postive Rate)
代表分类器预测的正类中实际负实例占所有负实例的比例。
六、人工智能所需要学习的技能有哪些?
这是一份来自5年调参侠的血泪史,讲一讲这几年我在人工智能领域都需要哪些知识。
老规矩, @TopGeeky 持续输出干货文章,建议收藏、点赞、关注后再看,并欢迎私信讨论,关注后私信将我这些年收藏的学习资源全部送到你的网盘吃灰。
人工智能需要的六大技能
先简述一下,人工智能需要数学基础技能、编程技能、数据工程能力、机器学习基础算法、深度学习算法、开发框架及项目等六大核心技能,聚集此六大技能多半就能站在人工智能最顶尖的一批人了。当然,千万不要对这六大技能感到畏惧,人工智能行业最应该具备的能力就是持续的终身学习的能力。
接下来将对以下技能一一拆解并附上学习资源,入门人工智能行业大概需要1-2年时间的学习,未来的道路很长千万别忘记初心,保持终身学习的能力。
上图详细的说明了人工智能所需要的知识点,但是千万别害怕,入门人工智能并不需要把所有知识点全部学会,只需要记住整体脉络即可,在真实场景遇到的时候再去补相关的知识点,切记保持终身学习的能力!切记!
认识人工智能
人工智能 (AI) 是计算机科学的一个广泛分支,涉及构建能够执行通常需要人类智能的任务的智能机器。虽然人工智能是一门具有多种方法的跨学科科学,但尤其是机器学习和深度学习的进步正在为科技行业的几乎每个领域带来范式转变。
- 将人工智能称之为机器可以具有人类思维相关认知能力的愿景
- 目前解决的方式是通过机器学习的方法来逼近人工智能这一个愿景
- 其中深度学习是机器学习中目前效果较好且最火热的一个技术分支
数学基础技能
深度学习的第一步或技能是 数学技能。它可以帮助您了解深度学习和机器学习算法的工作原理。当你尝试着去理解一个像机器学习(ML)一样的交叉学科的时候,主要问题是理解这些技术所需要的数学知识的量以及必要的水平。
数学有多重要同学们肯定都十分清楚,尤其是在人工智能(数据科学)领域,不懂数学想必寸步难行。
简单来说,数学能力是决定未来人工智能从业长远的必备条件。但是并不建议从头到尾花大量时间去一步一个脚印学习,这样会让你持续走弯路。
对于数学学习的最佳方式,就是将所有的知识点+学习资源整合,当遇到相关知识点成为拦路虎的时候回过头,利用学习资源重新复习这个知识点
线性代数
线性代数是 21 世纪的数学。在机器学习领域,线性代数无处不在。主成分分析(PCA)、奇异值分解(SVD)、矩阵的特征分解、LU 分解、QR 分解、对称矩阵、正交化和正交归一化、矩阵运算、投影、特征值和特征向量、向量空间和范数(Norms),这些都是理解机器学习中所使用的优化方法所需要的。
- 由 MIT Courseware 提供的线性代数课程(Gilbert Strang 教授的讲授的课程),备受广大学生的喜欢,精品中的精品,首推、强推。这门课的精彩程度在于它能够让你从空间的角度去考虑问题,而不仅仅是方程。而且书中大量的讲到线性代数的应用
- 3Blue1Brown出品的这个线性代数的本质系列视频就是开胃菜,总共14个小视频,视频控制在9-18分钟之间,很适合短时间快速温习线性代数知识点,更适合基础不好同学入手。
- immersivemath这个是最容易理解线性代数和空间关系的一种交互式网站,通过可以活动的图像,你可以观察和理解难懂的数学理论,课程看不懂的时候过来看一看帮助理解
- 关于教学课程强推清华大学马辉老师出品的线性代数是目前当中最难、品质保证最高,适合对数学有极度兴趣或者准备考研的同学。
- 《线性代数的艺术》一共只有12页纸,而且一半都是图解,小白也不用担心看不懂,阅读完这本书其实就算是完成线性代数的入门,建议由此入手,在遇到其他问题学习其他课程即可。
PS: 这篇文章耗时一周整理全网最具有代表性的线性代数学习资源,如果觉得有所帮助收藏、点赞、关注三连是对我最大的支持。
概率论与统计学
机器学习需要的一些概率和统计理论分别是:组合、概率规则和公理、贝叶斯定理、随机变量、方差和期望、条件和联合分布、标准分布(伯努利、二项式、多项式、均匀和高斯)、 矩母函数 (Moment Generating Functions)、最大似然估计(MLE)、先验和后验、最大后验估计(MAP)和抽样方法。
微积分
当确立好一个算法模型之后,问题的最终求解往往都会涉及到优化问题。在探寻数据空间极值的过程中,如果没有微分理论和计算方法作为支撑,任何漂亮的模型都无法落地。当然如果不具备基础的微积分知识,在理解机器学习算法的优化上同样困难,
因此,夯实多元微分的基本概念,掌握最优化的实现方法,是通向最终解决方案的必经之路。
凸优化
机器学习中广泛使用的凸优化方法主要分为梯度下降法和拟牛顿法,学习凸优化在机器学习中具有重要的地位,能够帮助我们更有效地训练模型、提高模型的性能,并且提供了坚实的数学基础和工具,用于解决各种优化问题
编程技能
Python 是迄今为止最流行、最好的机器学习语言,超过 60% 的机器学习开发人员使用并优先使用它进行开发。 Python 如此有吸引力有几个关键方面。 一方面,它很容易学习,这对于那些想要开始机器学习的人来说至关重要。 它还具有可扩展性和开源性。入门机器学习需要学习一门编程语言,这门编程语言主推python,如果有编程学习经验的同学可以自行学习。
数据工程能力
数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。特征工程很少在机器学习相关的书中阐述,包括很多网络课程当中,这个需要很多实际经验才能得出处理数据的知识。这里推荐几本特征工程的图书,可以自行阅读
数据工程包括数据获取,存储和处理。因此,工程师的主要任务是为数据提供可靠的基础架构。如果我们看一下需求的层次结构,数据工程将进入其中的前2-3个阶段:收集,移动和存储,数据准备。
还需要使用和了解绝大多数大数据存储工具,下面总结了大多数用于存储和处理大量数据的工具:
- Apache Kafka(Scala)
- Hadoop,HDFS(Java)
- Apache Spark(Scala)
- Apache Cassandra(Java)
- HBase(Java)
- Apache Hive(Java)
要了解这些工具的工作方式,您需要了解它们所使用的语言。Scala的函数式编程使您可以有效地解决并行数据处理的问题,在性能方面,python远远比不上Scala。还可以使用Java来对这些工具进行操作,不管怎么样你至少需要学会一种手段来操作这些工具。
机器学习基础算法
按照机器学习算法分类可以将机器学习划分为:
监督学习
非监督学习
按照难度划分,可以通过下面内容详细说明一下不同算法之间的难度和入行需要掌握的程度。
知识点 | 内容 | 概述 |
---|---|---|
分类算法 | 逻辑回归,决策树,支持向量机,集成算法,贝叶斯算法 | 准备面试的同学们必须掌握 |
回归算法 | 线性回归,决策树,集成算法 | 有些算法既能做分类也能做回归 |
聚类算法 | k-means,dbscan等 | 无监督是实在没标签的时候才考虑的 |
降维算法 | 主成分分析,线性判别分析等 | 重在理解降维的思想 |
进阶算法 | GBDT提升算法,lightgbm,,EM算法,隐马尔科夫模型 | 进阶算法有时间精力的同学们可以挑战 |
监督学习
监督学习是指在给定的训练集中“学习”出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入和输出,即特征值和目标值(标签),训练集中数据的目标值(标签)是由人工事先进行标注的,下面给出监督学习算法的发展时间线。
监督学习再次划分下去也包括两个类别,分别是分类和回归
分类方法可预测离散响应 - 例如,电子邮件是真正邮件还是垃圾邮件,肿瘤是恶性还是良性的。分类模型将输入数据划分成不同类别。典型的应用包括医学成像、语音识别和信用评分。
如果您的数据能进行标记、分类或分为特定的组或类,则使用分类。例如,笔迹识别应用会使用分类来识别字母和数字。在图像处理和计算机视觉方面,无监督模式识别方法被用于目标检测和图像分割。
回归方法可用于预测连续响应,例如电池荷电状态等难以测量的物理量,电网的电力负荷或金融资产价格。典型的应用包括虚拟传感、电力负荷预测和算法交易。
2.无监督学习
无监督学习算法利用未标记的数据自行从数据中发现模式。该系统能够从提供的输入数据中识别隐藏的特征。一旦数据更具可读性,模式和相似性就会变得更加明显。
下面是一个使用未标记数据训练模型的无监督学习方法的示例。在这种情况下,数据由不同的车辆组成。该模型的目的是对每种车辆进行分类。
无监督学习的一些示例包括 k 均值聚类、层次聚类和异常检测,下面详细介绍了无监督学习的类别和应用
算法名称 | 类型 | 特点 | 应用 |
---|---|---|---|
K-means | 基于划分方法的聚类 | 将数据分为K组,随机选取K个对象作为初始的聚类中心,计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心 | 客户分析与分类、图形分割 |
Birch | 基于层次的聚类 | 通过扫描数据库,建立一个聚类特征树,对聚类特征树的叶节点进行聚类 | 图片检索、网页聚类 |
Dbscan | 基于密度的聚类 | 将密度大的区域划分为族,在具有噪声的空间数据库中发现任意形状的簇,并将簇定义为密度相连的点的最大集合 | 社交网络聚类、电商用户聚类 |
Sting | 基于网格的聚类 | 将空间区域划分为矩形单元,对于不同级别的分辨率,存在多个矩形单元,高层单元被划分为多个低层单元,计算和存储每个网格单元属性的统计信息 | 语音识别、字符识别 |
主成分分析(PCA) | 线性降维 | 通过正交变换将一组可能存在相关性的变量数据转换为组线性不相关的变量,转换后的变量被称为主成分 | 数据挖掘、图像处理 |
线性判别分析(LDA) | 线性降维 | 将高维空间中的数据投影到低维空间中,投影后各个类别的类内方差小,而类间均值差别大 | 人脸识别、舰艇识别 |
局部线性嵌入(LLE) | 非线性降维 | 在保持原始数据性质不变的情况下,将高维空间的信号映射到低维空间,从而进行特征值的二次提取 | 图像识别、高维数据可视化 |
拉普拉斯映射(LE) | 非线性降维 | 从局部近似的角度构建数据之间的关系,对要降维的数据构建图,图中的每个节点和距离它最近的K个节点建立边关系 | 故障检测 |
深度学习算法
深度学习基础知识
算法名称 | 内容概述 |
---|---|
神经网络 | 神经网络是最基础的,为后方网络的学习打下基础 |
本质神经网络 | 大家听起来很熟悉吧,深度学习中的大哥大!计算机视觉的核心网络 |
神经网络 | 北乔峰,南慕容,这就是自然语言处理中的大哥大了! |
对抗生成网络 | 现在比较火的模型,玩起来很有趣,可以进行各种图像融合 |
序列网络模型 | NLP中常用架构,机器学习翻译模型,应用点比较多 |
两大经典网络架构 | 刚才说的CNN和RNN都是比较基础的网络模型,在其基础上还有很多拓展需要大家掌握 |
如果想要实战深度学习建议参考这本书 《动手学深度学习》, ⾯向希望了解深度学习,特别是对实际使⽤深度学习感兴趣的⼤学⽣、⼯程师和研究⼈员。
深度学习论文
如果你是深度学习领域的新手,你可能会遇到的第一个问题是“我应该从哪篇论文开始阅读?”下面是一个深入学习论文的阅读路线图!
这份深度学习论文阅读路线分为三大块:
Deep Learning History and Basics
Deep Learning Method
Applications
当然如果想要理解今年最热最火的深度学习大模型知识的话,真心的建议你参加知学堂推出的《程序员的AI大模型进阶之旅》一共2天的课程,里面有业内技术大佬全面解读目前的机器学习技术以及应用,可以提升对于模型的认知和掌握,更快速的了解这门工具。更更更更重要的是,学习要跟对教程老师,这门课的老师来源于科研界和工业界大牛授课,帮助你展望AI未来发展趋势。
最重要的是这个课程是完全免费的,白嫖党的福利。不需要钱就可以和大牛对话,这种机会实属难得, 更能体验自主训练的机器学习模型,实践理论相结合。上面的链接就是公开课的链接!!另外,添加课程之后一定一定一定要添加助教小姐姐的微信,可以私聊助教领取今年最火最热的大模型学习资源!!
开发框架及项目
开发框架
Sklearn:
scikit-learn 库是日常机器学习和数据科学最受欢迎的平台之一。原因是它是基于 Python 构建的,这是一种功能齐全的编程语言。这边有一个经典的Sklearn学习资源
PyTorch:
PyTorch中文官方文档其中讲述了很多有用的知识点。阅读英文文档比较困难的同学也不要紧,PyTorch相关的中文文档也很丰富,中文文档非常详细的介绍了各个函数,可作为一份PyTorch的速查宝典。
TensorFlow:
这是 YouTube 视频的 TensorFlow 教程,非常生动有趣。有视频讲解,文字教程,还有代码供你学习和练习。
tensorflow_cookbook:GitHub 5200 + Star这是一本 TensorFlow 英文书的代码,你在网上可以搜到这本书来看看,也可以在这直接使用这些代码进行学习。一共十一章,讲解十分详细
tensorflow2_tutorials_chinese:GitHub 2900+ Star
中文课程,详解讲解了tensorflow的使用教程。
Hi,这里是 @TopGeeky,一位持续输出计算机相关精品文章的热爱流程序员,如果本文对你有很大的帮助的话,请点赞、收藏、关注三连。因知乎平台规范本文没有提供资源外链,如果想要完整资源外链的话,关注+私信,领取资源汇总
七、人工智能和人工智能技术的理解?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
八、人工智能技术和人工智能的区别?
你应该知道,人工智能和人类智能,是有本质区别的
其实人工智能是依靠逻辑(人工编程)进行高速的运算和执行程序指令的能力,人类智能是思维与联想和创造的能力,二者有本质的区别。所以,人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。尽管人工智能可以模拟人脑的某些活动,甚至在某些方面超过人脑的功能,但人工智能不会成为人类智能而取代人的意识。
可以理解为人工智能本质上是对人类智能的功能模拟,二者虽然存在着一定的相似之处,但由于其思维的物质承担者不同。在智能活动中的地位和思维程序也不同,所以有本质的区别。人工智能没有人类智能所特有的创造性和社会性,只不过是人类智能的延伸,至多只是部分地超越人类智能,在整体上是不能最终代替和战胜人类智能的。
那么人工智能都是在模仿人类智能,人工智能是在不断进步的,但在总体上并未超过人类智能。在语言、思维和文化层级上,即在高阶认知层级上,目前人工智能都远逊于人类智能,事实上,人工智能和人类智能这两种智能方式是截然不同的。机器学习也只是对人类认知能力的一种模仿,不能作过高的评价,人们不必惊慌,更不能人为地制造恐慌。
最终人类智能是自主智能系统,除了理性智能之外,人类还具有难以评定的感性思维。通俗来说,人类会通过情绪爆发出不同层级的不同方向的能量,人类对事物的研究,看法,判定从来都不是以理性为唯一。人工智能在现阶段还只处于理性智能,它们能处理大部分数学逻辑能判断的事物。
我们人类会按照需要对各种情况进行判断,包括按人类道德去思考和判断事物,而人工智能只会按照最优化处理逻辑去思考做事。人类是现实思维,有主观能动性,机器是固定思维,无法开发出自主情绪,即使现在有一些机器能表达情感,那只不过是人类写入的场景与应对系统,并不是真正的主动情绪。
从人类智能和人工智能的起源方面看,二者有本质的不同,人类是在自然界长期演化发展的特定阶段产生的,人类的产生并不单纯是生物进化的结果,劳动在这个进化过程中起着极为重要的作用。
具有模拟人类思维的人工智能,只是人类在现代科学技术条件下的重大发展,它是按人类智能的思维方式由人创造和发展而来的,是人类运用数学、逻辑学、电子学、软件设计等知识设计出来的为人类服务的工具。虽然它能部分代替了人脑的功能,而且越来越成为人脑在功能上不可缺少的辅助手段,但它仍属于人工自然的范畴。
人工智能是形式化的方法,是严格遵循一定规则的“思维”。人工智能在逻辑思维、信息存储量、执行速度等方面一般来说要强于人类智能,但人类智能的思维方式是多样化的,不仅有科学思维的逻辑方法,而且还有人工智能所不及的非逻辑方法,人类在形象思维、直觉思维、创造性思维等方面都有其独到之处。
科学家通过机器实现智能的方法,跟人脑实现智能的方法、途径是不一样的,但是二者的目标是一样的,科学家会用机器擅长的方法去做,这是目前实现弱人工智能技术上的一条路径,不管科学家使用什么样的方法,计算机科学或者仿生学,都是使用和人脑不一样的方法实现相同的效果。
九、技术人文工作签证所需材料?
工作签证首先提供国外单位的工作邀请函、工作合同,其次需要提供你在国内单位的工作证明,你的工作资质证书或等级证书,同时大使馆还会要求你提供你在国内的财产证明比如银行存款证明、房产证等等。以证明你在工作结束后还会返回国内,没有移民倾向。有了这些大使馆才会考虑是否给予你工作签证。
十、人工智能制造技术?
人工智能制造是第四次工业革命的代表性技术,是基于新一代信息通信技术与先进制造技术的深度融合与集成,从而实现从产品的设计过程到生产过程,以及企业管理服务等全流程的智能化和信息化。人工智能制造的六大关键技术,包括人工智能技术、工业机器人技术、大数据技术、云计算技术、物联网技术以及整体的信息化系统。
1.人工智能技术
人工智能技术的三大特点就是大数据技术、按照计划规则的有序采集技术、自我思考的分析和决策技术。新一代的人工智能在新的信息环境的基础上,把计算机和人连成更强大的智能系统,来实现新的目标。人工智能正在从多个方面支撑着传统制造向智能制造迈进。
2.工业机器人技术
工业机器人作为机器人的一种,主要由操作器、控制器、伺服驱动及传感系统组成,是可以重复编程,对于提高产品质量,提高生产率和改善劳动条件起到了重要的作用。工业机器人的应用领域包括机器人加工、喷漆、装配、焊接以及搬运等。
3.大数据技术
工业大数据贯穿设计、制造、维修等产品的全生命周期,包括数据的获取、集成和应用等。智能制造的大数据分析技术包括建模技术、优化技术和可视技术等。大数据技术的应用和发展使得价值链上各环节的信息数据能够被深入的分析与挖掘,使企业有机会把价值链上更多的环节转化为企业的战略优势。
4.云计算技术
工业云平台打破了各部门之间的数据壁垒,让数据真正地流动起来,发现数据之间的内在关联,使得设备与设备之间,设备与生产线,工厂与工厂之间无缝对接,监控整个生产过程,提高产品质量,帮助企业做出正确的决策,生产出最贴近消费市场的产品。
5.物联网技术
智能制造的最大特征就是实现万物互联,工业物联网是工业系统与互联网,以及高级计算、分析、传感技术的高度融合,也是工业生产加工过程与物联网技术的高度融合。工业互联网具有全面感知、互联传输、智能处理等特点。
6.整体的信息化系统
智能制造信息系统,在数据采集基础上,建立完善的智慧工厂生产管理系统,实现生产制造从硬件设备到软件系统,再到生产方法,全部生产现场上下游信息的互联互通。