一、智慧城市与物联网的关系
物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
二、什么是物联网中的大数据?
(1)物联网中的数据量更大:物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点,其数量规模远大于互联网;
同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。
(2)物联网中的数据速率更高:
一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;
另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。
(3)物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无 一不是物联网应用范畴;
在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。
(4)物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。
物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。
顾名思义,物联网就是物物相连的互联网。这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。
物联网的实践最早可以追溯到1990年施乐公司的网络可乐贩售机—Networked Coke Machine。
物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防等多个领域。
三、物联网是大数据系统的必备要素吗
物联网的发展潜力和市场巨大,但是需要解决一系列问题,主要包括核心技术、标准规范、产品研发、安全保护等技术方面的问题,以及产业规划、体制机制、协调合作、推广应用等管理方面的问题。
第一,行业标准滞后,个行业标准繁杂。标准是物联网规模发展的前提。物联网涉及的标准比较复杂,包括终端、网络通信、中间件、系统架构、业务规范和安全等。以终端为例,国内做M2M终端的厂家,都有各自的硬件接口及通信协议和软件标准,厂家都是定向开发,成本高而规模小。另外,在网络层,物联网中无数个传感器形成M2M互联后就要涉及互联网、无线通信网(3G)等大网的互联互通问题。还有物联网业务的标准规范问题,比如智能电网的规范、移动支付的标准规范、智能家居的规范等。
第二,改造成本高,社会效益显著而盈利性较弱。例如,根据美国的数据统计,市政改造智能路灯,平均每盏灯投入232美元。适合政府的公共事业,如路灯、交通、环境监控等,现阶段物联网应用成本高是制约发展的重要原因之一。
第三,我国物联网技术还处于低端水平,特别是在芯片、传感器终端、信息处理和应用软件方面。在传感器方面,我国很多的技术相对来说只是做分装方面的工作,核心的技术如芯片方面还是受制于国外,包括射频识别技术、传感网、智能卡、芯片等很多都是依靠进口。技术能力的薄弱,导致我国成本相对较高,成为规模化应用的重要制约要素之一。在数据处理方面,包括应用开发、业务平台、系统集成、中间件等,各厂商处于生存及发展期,力量薄弱,相对于IBM、SAP、Axeda公司而言在技术实力和专业性方面都有很大差距。为物体智能而开发的嵌入式软件还没有规模化应用。
第四,产业链上下游缺乏清晰共赢的商业模式,也制约着应用的规模化推广。例如,终端未标准化,导致开发成本高,应用开发无法满足用户多样化需求;在系统集成领域,受上游供应商供货时间限制,项目周期长,客户分期付款,需垫付资金,资金压力大。对于运营商而言,物联网收益性较差。
第五,目前的需求主要受政策驱动,来自企业的需求还比较初级。
第六,个别企业有垄断产业链的行为。通过资金实力,垄断产业链上的企业,签订排他性协议,禁止与竞争对手合作,极大制约了产业链的健康发展。
四、大数据云计算就业前景怎么样?
目前大数据和云计算在技术体系上已经趋于成熟,正处在落地应用的初期阶段,相对于大数据来说,云计算技术的落地应用已经初具规模。云计算的应用目前正在经历从IaaS向PaaS和SaaS发展,在用户分布上也逐渐开始从互联网企业向广大传统企业过渡,未来的市场空间还是非常大的。云计算领域的相关岗位涉及到三大方面,其一是云计算平台研发;其二是云计算平台应用开发;其三是云计算运维,这些岗位的整体人才需求数量还是比较大的。
大数据领域的人才需求主要围绕大数据的产业链展开,涉及到数据的采集、整理、存储、安全、分析、呈现和应用,岗位多集中在大数据平台研发、大数据应用开发、大数据分析和大数据运维等几个岗位。
最后,虽然大数据和云计算各有不同的关注点,但是在技术体系结构上,都是以分布式存储和分布式计算为基础,所以二者之间的联系也比较紧密。另外,大数据、云计算和物联网三者之间的联系也比较紧密,未来物联网将是整合多个技术(包括人工智能)的重要应用场景,应该重点关注一下。